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CHAPTER SIX 
 

ANALYSIS OF CONTINUOUS VARIABLES: 
COMPARING MEANS 

 
 In the last chapter, we addressed the analysis of discrete variables. Much of the statistical analysis in 
medical research, however, involves the analysis of continuous variables (such as cardiac output, blood 
pressure, and heart rate) which can assume an infinite range of values. As with discrete variables, the 
statistical analysis of continuous variables requires the application of specialized tests.  In general, these 
tests compare the means of two (or more) data sets to determine whether the data sets differ significantly 
from one another. 
 
 There are four situations in biostatistics where we might wish to compare the means of two or more 
data sets. Each situation requires a different statistical test depending on whether the data is normally or 
non-normally distributed about the mean (Figure 6-1). 
 

1. When we wish to compare the observed mean of a data set with a standard or normal value, 
we use the test of hypothesis or the sign test. 

 

2. When we wish to determine whether the mean in a single patient group has changed as a 
result of a treatment or intervention, the single-sample, paired t-test or Wilcoxon signed-
ranks test is appropriate. 

 

3. When we are evaluating the means of two different groups of patients, we use the two-
sample, unpaired t-test or Wilcoxon rank-sum test. 

 

4. When multiple comparisons are required to determine how one therapy differs from several 
others, we employ analysis of variance (ANOVA). The use of multiple comparisons is 
discussed in the next chapter. 
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Figure 6-1: Analysis of Continuous Variables 
 
COMPARING MEANS 
 

 There are three factors which determine whether an observed sample mean is different from another 
mean or normal value. First, the larger the difference between the means, the more likely the difference 
has not occurred by chance. Second, the smaller the variability in the data about the mean, the more 
likely the observed sample mean represents the true mean of the population-at-large. The standard 
deviation represents the variability of the data about the mean. The smaller the standard deviation, the 
smaller the variability of the data about the mean. Third, the larger the sample size, the more accurately 
the sample mean will represent the true population mean. The standard error of the mean estimates 
how closely the sample mean approximates the true population mean. As the sample size increases (and 
approaches the size of the population), the standard error of the mean approaches zero. 
 



32 / A PRACTICAL GUIDE TO BIOSTATISTICS 

THE t DISTRIBUTION: ANALYSIS OF NORMALLY DISTRIBUTED DATA 
 

 The t distribution is a probability distribution which is frequently used to evaluate hypotheses 
regarding the means of continuous variables. It is commonly referred to as "Student's t-test" after 
William Gosset, a mathematician with the Guinness Brewery, who in 1908 noted that if one samples a 
normally distributed bell-shaped population, the sample observations will  also be normally distributed 
(assuming the sample size is greater than 30). Unfortunately, company policy forbade employee 
publishing and he was forced to use the pseudonym "Student." He named the distribution, "t", and 
defined a measure of the difference between two means known as the "critical ratio" or "t statistic" 
which followed the t distribution: 

t = x -
se

x -
sd / n

µ µ
=  

 

where x = the mean of the sample observations, µ = the mean of the 
population µ, and se = the standard error of the sample mean (which is equal 
to the sample standard deviation divided by the square root of the sample size, 
n). 

 
 The t distribution is similar to the standard normal (z) distribution (discussed in Chapter Two) in that it 
is symmetrically distributed about a mean of zero. Unlike the normal distribution, however, which has a 
standard deviation of 1, the standard deviation of the t distribution varies with an entity known as the 
degrees of freedom. Since the t-test plays a prominent role in many statistical calculations, degrees of 
freedom is an important statistical concept. Degrees of freedom is related to sample size and indicates 
the number of observations in a data set that are free to vary. For example, if we make n observations 
and calculate their mean, we are free to change only n - 1 of the observations if the mean is to remain the 
same as once we have done so, we will automatically know the value of the nth observation. The degrees 
of freedom for a data set are therefore equal to the sample size (n) - 1. Whereas there is only one 
standard normal (z) distribution, there is a separate t distribution for each possible degree of freedom 
from 1 to ∞. As with the normal distribution, critical values of the t-statistic can be obtained from t 
distribution tables (found in any statistics textbook) based on the desired significance level (p-value) and 
the degrees of freedom.  
 
 Appropriate use of the t distribution requires that three assumptions are met. The first assumption is 
that the observations follow a normal (gaussian or "bell-shaped") distribution; that is, they are evenly 
distributed about the true population mean. If the observations are not normally distributed, the t-statistic 
is not accurate and should not be used. As a general rule, if the median differs markedly from the mean, 
the t-test should not be used. The second assumption is that the variances (the standard deviations 
squared) of the two groups being compared, although unknown, are equal. The third assumption is that 
the observations occur independently (i.e., an observation in one group does not influence the 
occurrence of an observation in the other group). 
 
THE t DISTRIBUTION AND CONFIDENCE INTERVALS 
 

 In Chapter Three, we saw that confidence intervals could be calculated for any mean in order to 
evaluate how confident we were that our sample mean represented the true population mean. In order to 
calculate the 95% confidence interval for a mean we used the following equation: 
 

95% confidence interval = mean ± approximately 2 se 
 
Remember that this calculated the approximate confidence interval. In reality, the exact multiplying factor 
for the standard error of the mean depends on the sample size and degrees of freedom. Using the t 
distribution, we can calculate the exact 95% confidence interval for a particular mean (x) and standard 
deviation (sd) as follows (the critical value of t is obtained from a t distribution table based on the desired 
significance level and degrees of freedom present): 
 

95% confidence interval =  x t se = x t
sd

n
± ⋅ ± ⋅  

 

 For example, suppose we studied 87 intensive care unit (ICU) patients and found that the mean ICU 
LOS (length of stay) was 6.7 days with a standard deviation of 19.1 days. If we wish to determine how 
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closely our observed mean ICU LOS approximates the true mean LOS for all ICU patients with 95% 
confidence, we would determine the critical value of t for a significance level of 0.05 (5% chance of a 
Type I error) and 86 (87-1) degrees of freedom. The critical value of t for these parameters, as obtained 
from a t distribution table, is 1.99. Calculating the confidence interval as above we obtain: 
 

95% confidence interval = 6.7 1.99 19.1
87

6.7 4.07 days± ⋅ = ±  
 

Therefore, we can be 95% confident that, based on our study data, the interval from 2.63 to 10.77 days 
contains the true mean LOS for all ICU patients. 

 
ANALYSIS OF NORMALLY DISTRIBUTED CONTINUOUS VARIABLES 

 

 The t-test is commonly used in statistical analysis. It is an appropriate method for comparing two 
groups of continuous data which are both normally distributed. The most commonly used forms of the t-
test are the test of hypothesis, the single-sample, paired t-test, and the two-sample, unpaired t-test. 
 
TEST OF HYPOTHESIS 
 

 Suppose we know from previous experience that the normal mean LOS for all ICU patients in our 
hospital is 3.2 days and we wish to compare this to our study mean of 6.7 days to determine whether 
these two means differ significantly. To do so, we would use a form of the t-test known as the test of 
hypothesis in which we compare a single observed mean with a standard or normal value. For this 
comparison, the null and alternate hypotheses would be: 
 

Null hypothesis: the normal and study ICU LOS are not different 
Alternate hypothesis: the normal and study ICU LOS are different 

 

Using a significance level of 0.05 and n-1 (86) degrees of freedom we noted above that the critical value 
of t is 1.99. The t statistic would then be calculated for the test of hypothesis as follows: 

 

t = x -
sd / n

6.7 3.2
19.1 87

3.5
2.05

1.7µ
=

−
= =  

 

where x = the study ICU LOS of 6.7 days, µ = the normal ICU LOS of 3.2 
days, sd = the standard deviation of 19.1 days*, and n = 87 
 

* Remember that one of the inherent assumptions in using the t-test is 
that the sample and population have the same variance (and therefore 
the same standard deviation) 

 

Since 1.7 does not exceed the critical value of 1.99, we cannot reject the null hypothesis and must 
conclude that the means, although different, do not differ significantly. This is consistent with what we 
found using the 95% confidence interval in which we found that there was a 95% probability that the true 
population mean (3.2 days in this example) was between 2.63 and 10.77 days. If the normal ICU LOS in 
our hospital was actually 2.4 days (instead of 3.2 days), the critical value of t obtained from the above 
equation would be (6.7-2.4)/2.05 or 2.10. Since a t-statistic of 2.10 exceeds the critical value of 1.99, we 
would accept our alternate hypothesis and state that our study ICU LOS was significantly greater than the 
normal ICU LOS with at least 95% confidence. We would also know that this is true by realizing that an 
ICU LOS of 2.4 days lies outside of our 95% confidence interval of 2.63 to 10.77 days. Thus, t-tests and 
confidence intervals are just two different methods of determining the same statistical information. 
 
 The broadness of the above 95% confidence interval demonstrates that there is considerable 
variability in the data. If the sample variability was less (i.e., the standard deviation was smaller), the 95% 
confidence interval would be narrower and we would be more likely to find that our two means were 
significantly different. For example, had out standard deviation been only 5 days, instead of 19.1 days,  t 
would have been 6.53 rather than 1.7. This is clearly greater than the critical value of 1.99 necessary to 
accept the alternate hypothesis and state that a significant difference exists with at least 95% confidence. 
Thus, the greater the variability in the sample data, the greater the difficulty in proving that the sample 
mean is different from a normal value. This also holds true when one is comparing two groups of patients. 
The more variable the observations in each group, the harder it is to prove that they are different.  
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SINGLE-SAMPLE, PAIRED T-TEST 
 

 If we wish to evaluate an intervention or treatment and have paired observations (such as pre- and 
post-intervention) on a single group of patients, we can use a single-sample, paired t-test to determine 
whether the paired observations are significantly different from one another. In the test of hypothesis, we 
compared a single mean with a standard value. In calculating the paired t-test, because we are interested 
in the differences between pairs of data, the mean of the differences between the pairs replaces the 
mean of the observations. Otherwise, the calculation of the t-statistic remains the same. 
 
 Consider the following data on arterial oxygen tension (PaO2) measurements in 10 patients before 
and after the addition of positive end-expiratory pressure (PEEP). Our null and alternate hypotheses 
would be as follows: 
 

Null hypothesis: there is no change in PaO2 with the addition of PEEP. 
Alternate hypothesis: there is a change in PaO2 with the addition of PEEP. 

 
 

Patient Pre-PEEP PaO2 (torr) Post-PEEP PaO2 (torr) Difference 
1 55 70 15 
2 48 62 14 
3 50 68 18 
4 67 80 13 
5 72 85 13 
6 68 78 10 
7 42 65 23 
8 55 69 14 
9 61 86 25 

10 73 91 18 
mean 59.1 75.4 16.3 

sd 10.7 9.9 4.7 
 
 Using a significance level of 0.05 and n-1 (9) degrees of freedom, the critical value of t, obtained from 
a t distribution table, is 2.26. The t statistic for the single-sample, paired t-test is then calculated as 
follows: 

t mean of the differences
standard error of the mean of the differences

16.3
4.7 10

10.9= = =  

 

Since 10.9 is greater than the critical value of 2.26 required to identify a difference with a significance 
level of 0.05 (95% confidence of not committing a Type I error), we would reject the null hypothesis of no 
difference and state that the addition of PEEP significantly increases PaO2. Since our calculated critical 
value of 10.9 markedly exceeds 2.26, the actual significance level (or p-value) is really much smaller than 
0.05. In fact, the actual significance level associated with a critical value of 10.9 and 9 degrees of 
freedom is < 0.0001. 
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TWO SAMPLE, UNPAIRED T-TEST 
 

 One of the most common uses of the t-test is to compare observations from two separate groups of 
patients to determine whether the two groups are significantly different with respect to a particular 
variable of interest. To make such a comparison, we use a two-sample, unpaired t-test. As with the 
other forms of the t-test, it is assumed that the data are normally distributed. 
 
 Consider the following data on ICU charges for 10 age and procedure matched patients from the 
Preoperative Evaluation study. We wish to determine whether performing a preoperative evaluation on 
the patient (placement of a pulmonary artery catheter the night before surgery) results in higher ICU 
charges than no preoperative evaluation (pulmonary artery catheter placement in the operating room 
prior to surgery). Note that the mean and median of each group is similar, and that the variances are also 
similar. The first two assumptions of the t-test are therefore met and the use of a t-test to analyze this 
data is appropriate. 
 

 Study Patients Control Patients 
 $5,199 $21,929 
 $25,451 $8,065 
 $9,774 $5,832 
 $3,995 $28,213 
 $14,226 $16,039 
 $30,415 $1,995 
 $3,919 $20,877 
 $23,936 $25,374 
 $20,029 $2,544 
 $15,533 $15,257 

mean $14,948 $14,613 
median $13,380 $15,648 

sd $9,580 $9,550 
variance $91,776,400 $91,202,500 

 
Null hypothesis: preoperative evaluation does not affect ICU charges 
Alternate hypothesis: preoperative evaluation either increases or decreases ICU charges. 

 

 The degrees of freedom in a two-sample t-test are calculated as (n1 + n2 -2) since we are free to vary 
only n - 1 of the observations in each of the two groups. Assuming a significance level of 0.05 and 18 
degrees of freedom (10+10-2), the critical value of t is 2.1. The t statistic for a two-sample, unpaired t-test 
is given by the following modification of the t-test equation: 
 

t x x
s 1/ n 1/ n

1 2

r 1p

=
−

+ 2
 

 

where srp
 = the pooled standard deviation for both groups which is calculated as follows: 

 

( )( ) ( )( )
s

n 1 sd n 1 sd

n n 2r
1 1

2
2 2

2

1 2
p
=

− + −

+ −
 

 

Thus, we calculate the t statistic for the above data as: 
 

( )( ) ( )( )
s

9 9 9550

18r

2 2

p
=

+
=

9580
9565 

 

 
( )

t
14948 - 14613

9565
335
9565

0.035= = =  
 

Since t does not exceed the critical value of 2.1 necessary to detect a significant difference with 95% 
confidence, we must accept the null hypothesis and state that performing a preoperative evaluation prior 
to the patient’s operation does not result in a significant difference in ICU charges. Note that in the 
example above, our alternate hypothesis determined that we needed to perform a two-tailed test. We do 
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not know a priori whether preoperative evaluation will either increase or decrease ICU charges and thus 
need to investigate both possibilities. If we were only interested in identifying whether preoperative 
evaluation increased ICU charges, our alternate hypothesis would reflect that and be stated as: 
 

Alternate hypothesis: preoperative evaluation increases ICU charges 
 
We would therefore only need to perform a one-tailed test as we would only be interested in identifying 
differences in one direction. Remember that a two-tailed test requires more statistical evidence to detect 
a significant difference than does a one-tailed test because the two-tailed test must look in both directions 
(i.e., are charges increased? and are charges decreased?). The critical value of t reflects this difference 
in that the critical value necessary to detect a difference for a one-tailed test is smaller than that for a two-
tailed test. Also remember that if we only perform a one-tailed test (i.e., preoperative evaluation increases 
ICU charges), but preoperative evaluation actually decreases ICU charges, we will commit a Type II error 
because our alternate hypothesis will not account for this possibility. We will thus be forced to accept the 
null hypothesis and conclude that there is no difference when, in fact, there really is. In common practice, 
therefore, most researchers perform the statistically more strenous two-tailed test in order to be sure of 
detecting any difference that may be present and avoiding Type II errors. 
 

TRANSFORMATION OF NON-NORMALLY DISTRIBUTED DATA 
 

 As we have noted, one of the important assumptions in the use of t-tests is that the data is normally 
distributed. This is not always the case, however. Data may inherently not be normally distributed about 
the mean, or significant outliers may be present which skew the data in one direction or another. If this is  
true, the use of t-tests is inappropriate. In the situation in which the observations in a data set do not 
follow a normal distribution there are two options: we can either "transform" the data to a scale which is 
normally distributed, or we can use non-parametric methods of analysis which do not assume a normal 
distribution. 
 
 There are several methods for transforming non-normally distributed data to a normal distribution. 
Logarithmic transformations involve calculating the logarithm or using the square root of each data 
point to create a “transformed” data set. This will frequently minimize the effect of outlying data points and 
convert the data to a more normal distribution. Statistical tests utilizing the t distribution can then be used 
on the transformed, and now normally distributed, data to evaluate the observations. Rank 
transformations involve ordering the observations from smallest to largest and assigning a rank to each 
observation from 1 to n beginning with the smallest observation. Rank-ordering of data is the basis of the 
non-parametric statistical methods. 
 
 One potential problem with analyzing data through transformation is that the results of the statistical 
analysis actually refer to the transformed data and not the original data. In most situations, this point is 
not important. It may, however, make interpretation of the results difficult as the units of transformed data 
will be expressed in terms of the logarithm or square root that was used in the transformation. Further, 
the transformed data may lead to conclusions which are not supported by the original, non-transformed 
data and vice versa. Because of these potential problems with transformation of data, the more 
commonly used alternative in analyzing non-normally distributed data is to use non-parametric methods 
of analysis. 
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NON-PARAMETRIC METHODS OF ANALYSIS 
 

 In the presence of non-normally distributed data, the alternative to transformation is to use non-
parametric methods. These tests, unlike those which use the t distribution, do not assume that the data 
are normally distributed. They are statistically stronger than t-tests in the presence of skewed data, but 
are weaker than t-tests in the presence of normally distributed data. The most commonly used non-
parametric methods are the sign test, the Wilcoxon signed-ranks test, and the Wilcoxon rank-sum 
test (Mann-Whitney U test). 
 
THE SIGN TEST 
 

 If we wish to compare a single non-normally distributed mean with a known standard or normal value, 
the sign test is a useful method (note that if the data were normally distributed, we would use the test of 
hypothesis  in this situation). 
 
 The sign test is based on the fact that if the observations were normally distributed and were not 
different from the standard or normal value, their median would closely approximate the standard or 
normal value (the median of the population-at-large). Given this, there would be a probability of 0.50 that 
any observation was either greater than or less than the standard value. If the observed values differ from 
the standard value significantly (and therefore do not represent the population-at-large), the probability 
will be skewed to one side or the other of 0.50. To perform the sign test, we must first compare each of 
our n observations with the standard or normal value (the population median) and sum the number of 
comparisons (N) in which the observation exceeds the normal value. The probability of such an 
occurrence is given by: 

( ) ( )
( )

probability =
0.5 0.5

n - N  !

N n−N
 

 

 For example, what is the probability of 10 ICU patients all having an ICU LOS greater than the normal 
LOS of 2.7 days (i.e., N=10)? The probability of this event is obtained by: 
 

( ) ( )
( )

( )( )
( )

probability
0.5 0.5

10 10  !

0.00098 1

1
0.00098

10 10 10
=

−
= =

−

 

 

 The actual probability of such an occurrence is therefore 1 in 1000. As with Fisher's exact test, all of 
the more extreme cases must also be calculated, when appropriate, and each of the resultant 
probabilities summed to obtain the total probability of occurrence. Note that this is an example of a one-
tailed test; we are asking whether a mean is greater than the known value. If we wanted to test whether 
the ICU LOS for the same 10 patients was either less than or greater than the normal value, we would 
want to perform a two-tailed test. For the sign test, the two-tailed probability is given by doubling the one 
tailed probability. 
 
 The sign test can also be used to evaluate paired sets of data. Given any two values, there is a 
probability of 0.50 that the difference between the values is positive. Similarly, there is a probability of 
0.50 that the difference is negative. Consider the following data from the Preoperative Evaluation study 
comparing ICU LOS for preoperative evaluation (study) patients and for age and procedure matched 
patients (control patients) who did not undergo preoperative evaluation. The data means and medians 
are not similar and are therefore not normally distributed being skewed by patient pair 6. To appropriately 
analyze this data, a non-parametric method such as the sign test must be used. Our null and alternate 
hypotheses would be as follows: 
 

Null hypothesis: the ICU LOS for study and control patients is the same. 
Alternate hypothesis: the ICU LOS for study patients and control patients are different. 
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Patient Pairs 

Study Patient 
ICU LOS 

Control Patient 
ICU LOS 

 
Difference 

1 4 2 2 
2 13 4 9 
3 3 1 2 
4 9 1 8 
5 2 2 0 
6 178 1 177 
7 2 3 -1 
8 8 4 4 
9 4 1 3 

10 3 4 -1 
 
Given 10 pairs of age and procedure-matched patients, 8 sets of paired data had a positive difference 
while 2 sets had a negative difference. Using the sign test, and calculating each of the more extreme 
possible outcomes, the total probability of this occurring is: 
 

( ) ( ) ( ) ( ) ( ) ( )
P

0.5 0.5
2!

0.5 0.5
1!

0.5 0.5
0!total

8 2 9 1 10

= + +
0

 
 

P 0.00049 0.00098 0.00098 0.0025total = + + =  
 

Since we did not know a priori whether the two groups differed and in which direction, we need to perform 
a two-tailed test. Thus, the probability that the two groups have the same mean ICU LOS is (0.0025)(2) = 
0.005 or 1 in 200. We therefore reject the null hypothesis and accept our alternate hypothesis stating that 
the groups differ significantly with a probability of 0.005. 
 
WILCOXON SIGNED RANKS TEST 
 

 When we are evaluating a single group of patients and wish to evaluate the difference between two 
paired samples which are non-normally distributed, the Wilcoxon signed-ranks test is most commonly 
used. This is the non-parametric equivalent of the single sample, paired t-test. The Wilcoxon-signed 
ranks test evaluates the hypothesis that the medians of the two sets of observations are the same. It is 
almost as powerful as the t-test when the observations are normally distributed and is more powerful than 
the t-test when the observations are not. 
 
 Consider the following data on right ventricular end-diastolic volume index (RVEDVI) before and after 
patients received a 500 mL normal saline infusion. If the data were normally distributed, we would use the 
single-sample, paired t-test. Upon inspection of the raw data, however, it is obvious that the data are not 
normally distributed and contain several outliers (particularly patients 3 and 7) which skew the data. To 
confirm this, we can compare the mean and median of each sample. Since the mean and median are not 
similar, the data are non-normally distributed and a t-test is inappropriate. We would therefore use the 
Wilcoxon signed-ranks test to compare the means of the pre- and post-infusion data. 
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 RVEDVI RVEDVI   Signed 

Patient Pre-bolus Post-bolus Difference Rank Rank 
1 62 83 21 7 7 
2 54 60 6 1 1 
3 182 172 -10 2 -2 
4 73 101 28 9 9 
5 47 72 25 8 8 
6 32 47 15 5 5 
7 120 160 40 10 10 
8 90 79 -11 3 -3 
9 85 105 20 6 6 

10 55 67 12 4 4 
mean 80.0 94.6   4.5 

median 67.5 81.5   4.5 
sd 43.7 41.5   4.5 

 
 To perform the Wilcoxon signed-ranks test, we first calculate the difference between each pair of 
observations. These differences are then ordered from smallest to largest (ignoring the sign) and ranked 
from 1 to n beginning with the smallest observation. The sign of the difference (either positive or negative) 
is then assigned to that difference’s rank. We then use the “signed ranks” of the observations to calculate 
the t statistic. The mean and median of the ranks are both 4.5. The ranked data are now normally 
distributed and use of the t-test is appropriate whereas it would not have been on the original, non-
normally distributed data. Assuming we wish to detect a difference with 95% confidence (significance 
level of 0.05) and have 9 degrees of freedom (10-1 pairs of data), the critical value of t is 2.26. The t 
statistic is then calculated on the ranks as follows: 

 

t mean of ranks
standard error of the mean of ranks

4.5
4.5 10

3.2= = =  

 

Since our calculated t exceeds the critical value of t (2.26) for a significance level of 0.05, we would reject 
the null hypothesis and accept the alternate hypothesis, concluding that a 500 mL normal saline infusion 
does result in a significant increase in RVEDVI with a significance level of < 0.05. 
 
WILCOXON RANK-SUM TEST (MANN-WHITNEY U TEST) 
 

 If we are comparing the means of two independent groups, and the data are non-normally distributed, 
the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) is appropriate. This is the non-
parametric equivalent of the two-sample, unpaired t-test. The Wilcoxon rank-sum test analyzes the 
equality of the sample medians rather than the means (as is done in the two-sample, unpaired t-test). It is 
similar to the Wilcoxon signed-ranks test for paired data in that the raw observations are ranked from 
smallest to largest and the mean ranks are then compared using the t statistic for two independent 
samples (two-sample, unpaired t-test). The difference in the ranking for this test is that the observations 
of both groups are considered as one group for the purpose of assigning the ranks. The theory of the test 
is that if the two samples are similar, their medians will also be similar and the mean ranks will be equal. 
If one mean rank is larger, then that sample must have larger observations (and therefore a larger 
median) than the other. The Wilcoxon rank-sum test then quantitates how different the two mean ranks 
are using the t-statistic. 
 
 Consider the following data on total hospital charges and ICU LOS (length of stay) for age and 
procedure matched patients from the Preoperative Evaluation study. The data are non-normally 
distributed containing several outliers (patient pairs 4 and 6) which skew the data (note the differences 
between the mean and median for each group).   
 
 To use the Wilcoxon rank-sum test, the data from both groups are combined and ranked from 
smallest to largest. Thus, all 20 of the patient charges have been considered as a group and ranked from 
1 to 20 (see below). Similarly, all of the LOS measurements have been considered as a group and 
ranked from 1 to 20. Note that for the LOS measurements, some of the observations have the same 
value. In this situation, the ranking is performed by using the mean rank for each of the ties. For example, 
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four patients had a LOS of 1 day. Normally, these patients would receive the ranks 1, 2, 3, and 4. Since 
we must treat each observation equally, each of the four patients with LOS of 1 day is assigned the 
average rank of 2.5 [(1+2+3+4)/4=2.5]. Similarly, there are four patients with a LOS of 2 days. These 
patients would normally receive the ranks 5, 6, 7, and 8. We assign each of these patients the average 
rank of 6.5 [(5+6+7+8)/4=6.5]. 
 

Patient 
Pairs 

Study Pt 
Charges 

Rank Control Pt 
Charges 

Rank Study Pt  
LOS 

Rank Control 
Pt LOS 

Rank 

1 $28,004 8 $19,750 3 4 14 2 6.5 
2 $44,768 13 $39,684 12 13 19 4 14 
3 $23,727 5 $22,954 4 3 10 1 2.5 
4 $330,989 19 $26,818 7 9 18 1 2.5 
5 $11,172 1 $18,998 2 2 6.5 2 6.5 
6 $838,282 20 $36,673 11 178 20 1 2.8 
7 $28,334 9 $101,016 18 2 6.5 3 10 
8 $53,260 15 $70,198 17 8 17 4 14 
9 $34,446 10 $26,248 6 4 14 1 2.5 

10 $57,966 16 $49,287 14 3 10 4 14 
mean $145,095 11.6 $41,163 9.4 22.2 13.0 2.7 7.5 

median $39,607  $31,746  4  2  
sd $261,068 6.1 $31,746 5.8 54.9 5.0 2.21 5.1 

 
We will first compare the patient charges using the Wilcoxon rank-sum test. To calculate the t statistic, we 
must first calculate the pooled standard deviation of the ranks which is calculated as in the two-sample 
unpaired t-test, but using the standard deviations of the ranks: 
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The degrees of freedom in this case are calculated by (n1 + n2 -2). For a significance level of 0.05 and 18 
degrees of freedom (10+10-2), the critical value of t is 2.1. The t statistic for the Wilcoxon rank-sum test is 
calculated as follows: 
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Based on this, we cannot reject our null hypothesis of no difference as the calculated value of t does not 
exceed the critical value of 2.1. The mean hospital charges are therefore not significantly different 
between the groups despite the difference of over $100,000 between the means. The reason that this is 
true is related to the large variability that exists in the charges as noted by the large standard deviations. 
The large variability in the data makes it difficult to prove that a difference exists between the groups. 
 
 We now can compare the LOS measurements, again using the Wilcoxon rank-sum test. Using the 
same significance level (0.05) and degrees of freedom (18), the critical value of t for this comparison is 
still 2.1. The t statistic is calculated as follows: 
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( )( )
t 13.5 7.5

5.05 0.447
2.26=

−
=  

 

As t exceeds the critical value of 2.1, we reject the null hypothesis of no difference and state that the 
mean ICU LOS of preoperative evaluation patients is significantly greater than that of control patients with 
a significance level of < 0.05.  
 
 Interestingly, if we use the two sample, unpaired t-test to analyze this data, the null hypothesis is not 
rejected and the significant difference is missed (a Type II error). This is because of the non-normal 
distribution of the data and the inequality of the sample variances, both of which violate the basic 
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assumptions of the t-test, making it inaccurate and leading to a false conclusion. This emphasizes the 
importance of performing the appropriate statistical test if valid conclusions are to be made. 
 
 The Wilcoxon rank-sum test is especially useful in evaluating data from ordered categories (such as 
tumor staging classifications) which have non-numerical scores. For example, how would we compare 
two treatments whose outcome is documented as either "worse", "unchanged", or "improved?” One 
option is to compress the data into two categories (such as "improved" and "not improved") so that we 
can use a chi-square test or Fisher’s exact test to compare the groups. By doing so, however, we 
sacrifice data (reducing our observations to two categories instead of three categories) and gain less 
information from the study. If we apply ranks to the outcome categories, however, and evaluate these 
ranks with the Wilcoxon rank-sum test, no data is sacrificed and we use the full potential of the data 
collected. 
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