AXILLARY ARTERY AND VEIN CATHETERIZATION

SUMMARY
The axillary artery and vein represent safe and feasible alternatives to subclavian, internal jugular and femoral catheter insertion sites. Ultrasound-guided axillary artery and venous catheter insertion is associated with higher success rates and lower complication rates than similar insertion based upon anatomical landmarks. Ultrasound-guided axillary artery and venous catheterization are techniques that every intensivist should become familiar with.

RECOMMENDATIONS
- **Level 1**
 - None
- **Level 2**
 - Use of ultrasound increases successful catheter insertion and decreases central venous catheterization complication rates.
- **Level 3**
 - Real-time ultrasound-guided axillary vein catheterization is a safe and reliable alternative to subclavian, internal jugular and femoral venous access.
 - Catheter-related infection rates are similar between axillary and internal jugular central venous catheters.
 - Axillary arterial lines are a safe and practical alternative to femoral access when radial sites are unavailable or inaccessible.

INTRODUCTION
With the advent of advanced ultrasound technology, new techniques for arterial and venous access have emerged. Although catheterization of the axillary vessels has its own specific complications, it is a safe and reliable procedure for achieving vascular access to the arterial and venous system. Given the proximity to the aortic root, axillary arterial access may provide a more reliable arterial pressure measurement and waveform by which to guide resuscitative efforts. The robust collateral circulation of the arm and larger intraluminal diameter of the vessel results in infrequent thrombosis compared to other sites. These advantages must be tempered by the possibility of neuralgia or brachial plexus injury due to direct damage or hematoma formation. The extrathoracic location of the axillary vein makes iatrogenic pneumothorax less likely. Success rates are high when using real-time ultrasound guidance with infection rates similar to that of internal jugular catheters (1).

EVIDENCE DEFINITIONS
- **Class I**: Prospective randomized controlled trial.
- **Class II**: Prospective clinical study or retrospective analysis of reliable data. Includes observational, cohort, prevalence, or case control studies.
- **Class III**: Retrospective study. Includes database or registry reviews, large series of case reports, expert opinion.
- **Technology assessment**: A technology study which does not lend itself to classification in the above-mentioned format. Devices are evaluated in terms of their accuracy, reliability, therapeutic potential, or cost effectiveness.

LEVEL OF RECOMMENDATION DEFINITIONS
- **Level 1**: Convincingly justifiable based on available scientific information alone. Usually based on Class I data or strong Class II evidence if randomized testing is inappropriate. Conversely, low quality or contradictory Class I data may be insufficient to support a Level I recommendation.
- **Level 2**: Reasonably justifiable based on available scientific evidence and strongly supported by expert opinion. Usually supported by Class II data or a preponderance of Class III evidence.
- **Level 3**: Supported by available data, but scientific evidence is lacking. Generally supported by Class III data. Useful for educational purposes and in guiding future clinical research.

Approved 07/29/2015
PROCEDURE

Educational videos detailing both arterial and venous catheterization techniques using ultrasound guidance are available on YouTube and the SonoSite website. Alternatively, videos are available on your smartphone using the SonoAccess® 2.0 Mobile App.

Anatomy

![Diagram showing anatomy of the upper and lower limit of the axillary vein]

Patient Position

The patient is positioned supine in the Trendelenberg position with arms at their side much like a traditional subclavian approach. The vessels can be located between the crease of the arm and the clavicle in the deltopectoral groove. An axillary approach may also be utilized. If approaching from the axilla, care must be taken to puncture medially enough to not be in the brachial artery or vein. Alternatively, care must also be taken to avoid insertion of a catheter into the subclavian artery where compression upon catheter discontinuation may be difficult.

Ultrasound Guidance

Locate the vessels using either the long or short access view just inferior to the clavicle. The long access view allows better visualization of needle depth during the procedure. Consider using a 20 cm catheter as the distance is greater than with a traditional subclavian or jugular catheter.
LITERATURE REVIEW
Czarnik et al. prospectively examined the effectiveness of real-time ultrasound-guided axillary vein catheterization for inserting dialysis catheters in 29 ICU patients. They found the overall successful cannulation rate to be 93% with a 6.8% potentially serious complication rate, 10.3% minor complication rate, and a 0% life threatening complication rate. They concluded that this was a reliable method of dual-lumen hemodialysis catheter insertion and can be considered a reasonable alternative to jugular and femoral routes in special clinical circumstances (2).

Karimi-Sari et al. performed a randomized controlled trial comparing anatomical landmark and ultrasound-guided methods for insertion of central venous catheters. They found a 100% success rate in the ultrasound-guided group and 88% in the landmark group. Also, the rate of complications was significantly lower in the ultrasound-guided group (4% vs. 24%) (3).

Martin and Bruder prospectively compared catheter related infections after axillary and internal jugular catheter placement. A total of 141 catheters were examined by culturing the catheter tips. The incidence of catheter-related infection (including catheter-related sepsis, and bacteremia) was not different between the two groups (axillary vein: 8.1%; internal jugular vein: 7.6%).

Scheer et al. found the following complications related to axillary artery catheterization after reviewing 1989 reports of access: permanent ischemic damage, 0.2%; temporary occlusion, 1.2%; sepsis, 0.5%; local infection, 2.2%; pseudoaneurysm, 0.1%; hematoma, 2.3%; bleeding, 1.4% (5).

REFERENCES
<table>
<thead>
<tr>
<th></th>
<th>Brachial</th>
<th>Radial</th>
<th>Axillary</th>
<th>Femoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of cannulation</td>
<td>No data obtained</td>
<td>Less difficult in normotension, although hypotension and vasoconstriction may render cannulation difficult</td>
<td>Technically difficult, although pulsation and pressure are maintained even with peripheral vascular collapse</td>
<td>Less difficult, can be cannulated, even during profound hypotension</td>
</tr>
<tr>
<td>Collateral circulation</td>
<td>Lacks the anatomic benefit of collateral circulation</td>
<td>Dual circulation in most of the population</td>
<td>Extensive collateral circulation</td>
<td>Collateral circulation exists via a number of anastomoses</td>
</tr>
<tr>
<td>Inadvertent neural or adjacent structure injury</td>
<td>Damage to the median nerve may result in appreciable long-term disability</td>
<td>Carpal tunnel or sympathetic-mediated pain syndrome from median or radial nerve pressure or from blood extravasation into palmar sheath</td>
<td>Axillary sheath rapidly fills with blood; nerve damage and neuropathy secondary to brachial plexus compression</td>
<td>Potential for extraperitoneal hemorrhage from too high an entry site; vascular injury from femoral common branch entry; hematoma formation</td>
</tr>
<tr>
<td>Thrombogenicity</td>
<td>High risk; thrombotic sequelae may be profound</td>
<td>High risk, smaller arterial lumen associated with increased risk of thrombosis</td>
<td>Less risk; catheter at this site poses little risk if thrombosis occurs</td>
<td>Less risk; large intraluminal diameter and high rate of flow discourage thrombus formation</td>
</tr>
<tr>
<td>Accuracy of waveform</td>
<td>Substantial difference in contour and amplitude of ascending aortic and brachial waveform</td>
<td>Substantial difference in contour and amplitude of ascending aortic and radial waveforms</td>
<td>Proximity to aortic arch allows a reliable waveform, even during profound vasoconstriction</td>
<td>Morphologically reliable waveform</td>
</tr>
<tr>
<td>Accuracy of physiological date</td>
<td>Subject to inaccuracy inherent in distal location; overestimates systolic blood pressure; may be more accurate than radial approach</td>
<td>Subject to inaccuracy inherent in distal location; overestimates systolic blood pressure; underestimates central aortic pressure</td>
<td>More accurately reflects systolic blood pressure</td>
<td>More accurately reflects systolic blood pressure</td>
</tr>
</tbody>
</table>

Surgical Critical Care Evidence-Based Medicine Guidelines Committee

Primary Author: Andrew Skattum, MD
Editor: Michael L. Cheatham, MD
Last revision date: 07/29/2015

Please direct any questions or concerns to: webmaster@surgicalcriticalcare.net