
EPIDEMIOLOGIC TESTS / 19 

CHAPTER FOUR 
 

EPIDEMIOLOGIC TESTS 
 

 Epidemiology is the study of disease and its causative factors. Most commonly it involves studying a 
particular population of patients to determine the frequency of a disease and how it affects that population. 
Epidemiology also involves the assessment of various diagnostic tests and their clinical utility in evaluating 
and treating disease. 
 
INCIDENCE, PREVALENCE, AND MORTALITY RATES 
 

 Epidemiologists have specific terms for disease occurrence which are commonly misused. The 
incidence of a disease is defined as the number of new cases of the disease per unit time divided by the 
population at risk for the disease at the beginning of the time period. The large size of some populations of 
interest can make accurate incidence measurements difficult and costly to obtain. The prevalence of a 
disease is defined as the number of individuals with the disease divided by the population at risk for the 
disease at a specific point in time. 
 

 Incidence =      number of new cases of disease over time     
 number of patients at risk for disease at the beginning of the time period 
 

 Prevalence =   number of patients with the disease at a specific point in time 
  number of patients at risk for disease at a specific point in time 
 
 

 Mortality rates are another aspect of epidemiology in which specific definitions are used. Mortality rates 
quantitate the incidence of death due to various causes in a particular population of interest and provide a 
standardized method by which to compare the frequency of death in different patient populations. The crude 
annual mortality rate is defined as the total number of deaths in a population at risk per year divided by the 
size of the population at risk at mid-year. The population size is measured at mid-year to establish an 
average size for the population as some patients will die early in the year while others will die late in the year. 
The crude annual mortality rate is used to measure mortality from all causes over the period of a year. A more 
specific rate is obtained from the cause-specific annual mortality rate in which a particular cause of death 
is of interest. It is defined as the number of deaths due to the cause of interest per year divided by the size of 
the population at risk measured at mid-year. Occasionally, we wish to investigate the death rate due to a 
particular cause by age; the age-specific annual mortality rate is defined as the number of deaths in a 
given age group at risk per year divided by the size of the population at risk measured at mid-year. 
 
 Crude annual mortality rate = total deaths in population at risk per year 
  total population at risk at mid-year 
 

 Cause-specific annual mortality rate = total deaths from cause of interest per year 
  total population at risk at mid-year 
 

 Age-specific annual mortality rate = total deaths in a given age group per year 
 total population at risk at mid-year 
 
SURVIVAL ANALYSIS 
 

 Although mortality rates allow us to characterize the occurrence of death in a particular population per 
year, they do not provide us with information on the natural progression of the disease process. To obtain 
such information, special methods of analysis are required and are known by the terms survival analysis, 
actuarial analysis, or life-table analysis. These methods are used to follow a specific group of patients in 
order to determine the effect of time on the natural progression of the disease process of interest. 
 
 Survival analysis is based on probability theory. Recall from Chapter One that the probability of two 
independent events occurring together is given by the product of their respective probabilities. The probability 
that a patient survives (PS) for two years is therefore given by the probability of surviving the first year (P1) 
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multiplied by the probability of surviving the second year (P2). The cumulative probability of a patient surviving 
for five years is given by: 
 

PS = P1 x P2 x P3 x P4 x P5 
 

 Actuarial or life-table analysis and the Kaplan-Meier product limit method are common statistical 
methods for evaluating survival data. They each result in graphs which illustrate the survival rates of the 
patient population at various points in time. Actuarial analysis calculates the exact survival rate during 
specific time periods (see Chapter Twelve for an example). The actuarial method makes two assumptions: 1) 
that all deaths and “withdrawals” (patients lost to follow-up) occur on average at the midpoint of each time 
period, and 2) that the probability of survival for each time period is independent. Thus, the actuarial method 
is subject to significant bias if the occurrence of death does not occur evenly in the population or if a large 
number of patients are lost such that their outcome (death or survival) is not known. 
 
 The Kaplan-Meier product limit method does not look at survival rates during specific time periods, but 
rather estimates survival and recalculates this estimate each time a patient dies (see Chapter Twelve for an 
example). It is not subject to the potential bias introduced by withdrawals as is actuarial analysis. Both of 
these methods are easily performed by most computer statistics packages and are commonly seen in the 
medical literature. Statistical methods exist for comparing and detecting differences between survival curves. 
Such tests include the Wilcoxon rank-sum test, the Kruskal-Wallis test,  and the Mantel-Haenszel test. 
 
ASSESSING DIAGNOSTIC TESTS 
 

 Physicians utilize diagnostic tests each day to help “rule in” or “rule out” disease. We propose a diagnosis 
and use laboratory tests and procedures to confirm it. In doing so, we begin with a pre-test likelihood of 
disease. We have an impression from the patient’s history, physical examination, and previous diagnostic 
tests of whether or not our proposed diagnosis is correct. We then perform the diagnostic test and modify our 
impressions based on the test results creating the post-test likelihood of disease. From the post-test 
likelihood we may either 1) confirm our diagnosis, 2) reject our diagnosis, or most commonly 3) strengthen 
our impression of the probability of disease, but not enough to either confirm or reject our hypothesized 
diagnosis. 
 
 Whether a diagnostic test is clinically useful in predicting disease (and therefore confirming our diagnosis) 
is dependent upon the number of patients it correctly identifies as having disease (true positives or TP), the 
number it correctly identifies as not having disease (true negatives or TN), the number it falsely identifies as 
having disease (false positives or FP) and the number it falsely identifies as not having disease (false 
negatives or FN). Based on these four outcomes, we can create a 2 x 2 contingency table  for any 
diagnostic test which summarizes its ability to accurately predict the presence of disease. 
 

 Disease No Disease 
Test Positive True Positive False Negative 
Test Negative False Positive True Negative 

 

Figure 4-1: 2 x 2 contingency table 
 

 The clinical utility of a diagnostic test is most commonly quantitated using measurements such as 
sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The 
sensitivity of a test is defined as the proportion of diseased patients (true positives + false negatives) which 
the test correctly classifies as having the disease (true positives). Sensitivity can also be described as the 
“true positive fraction.” A test with high sensitivity is important when we do not want to risk missing a 
disease if it is present. Such a test is therefore useful in screening for the presence of disease. 
Mathematically, the sum of a test’s sensitivity (true positive fraction) and the proportion of patients with 
disease that it misses (the false negative fraction) must equal 1; thus, as the sensitivity of a test increases, 
the number of patients it misses (false negatives) must decrease. 
 

Sensitivity = TP/(TP+FN) 
 

 The specificity of a test is defined as the proportion of non-diseased patients (true negatives + false 
positives) which the test correctly classifies as not having the disease (true negatives). Specificity can also be 
described as the “true negative fraction.” A test with high specificity is important when false positive results 
would result in harm to patients physically or emotionally or require them to undergo unnecessary procedures 
or treatments. The specificity of a test is a measure of its ability to confirm the presence of disease. 
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Mathematically, the sum of a test’s specificity (true negative fraction) and the proportion of patients that it 
falsely identifies as having the disease (the false positive fraction) must also equal 1; as the specificity of 
the test increases, the number of false positives must decrease. 
 

Specificity = TN/(TN+FP) 
 

 The positive predictive value of a test is the proportion of positive tests (true positives + false positives) 
that correctly identify a patient with disease (true positives). The negative predictive value of a test is the 
proportion of negative tests (true negatives + false negatives) that correctly identify a patient without disease 
(true negatives). 

Positive Predictive Value = TP/(TP+FP) 
 

Negative Predictive Value = TN/(TN+FN) 
 

 The accuracy of a diagnostic test is the proportion of all test results, both positive and negative, which 
correctly identify the patient’s disease status. 
 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 
 

 If we were to design the perfect diagnostic test, it would have a sensitivity of 1.0 (no false negatives) and 
a specificity of 1.0 (no false positives). In reality, few if any diagnostic tests possess these characteristics. As 
we have seen, the characteristics of a test will vary depending on how we define disease. If our disease of 
interest is a dichotomous or binary variable (i.e., live vs die, extubated vs reintubated), the presence of 
disease is fairly obvious. The vast majority of disease processes are not that straightforward however. In 
defining the presence of hypoxia, for example, should it be defined as an arterial oxygen tension (PaO2) of < 
50 torr?, < 60 torr?, < 70 torr? Depending on the decision threshold or “cut-off point” which we use to 
define it, the prevalence of our disease (in this case “hypoxia”) will change significantly. If we are more 
stringent in our definition of hypoxia (a PaO2 of < 50 torr for example), the sensitivity of our test will be high 
(there will be few false negatives as most patients with a PaO2 < 50 torr will be hypoxic), but the specificity will 
be low (there will be many false positives as many patients with PaO2’s > 50 torr will also be hypoxic). 
Conversely, if we are less stringent in our definition of hypoxia (a PaO2 of < 70 torr for example), the 
sensitivity of our test will be low (many patients are asymptomatic despite PaO2‘s of < 70 torr), but the 
specificity will be high (hypoxic patients are unlikely to have a PaO2  > 70 torr). The way in which we define 
our disease of interest can therefore significantly affect the characteristics of our test. In an attempt to 
improve our test’s sensitivity, we must frequently accept a decrease in specificity, or vice versa. We must 
decide, based on the nature of the disease, which is worse: an increased false positive rate or an increased 
false negative rate and choose our decision threshold accordingly. 
 
 The prevalence of the disease can also affect the characteristics of a test. If the disease of interest is 
rare, unless the test is very accurate in predicting disease, the test will have a high false positive rate. For 
example, a test with a sensitivity of 0.95 (false negative rate of 5%) and specificity of 0.95 (false positive rate 
of 5%) will be a very good test if the disease prevalence is high, but will be a poor test if the prevalence is low 
and the disease is rare. If, for example, the disease prevalence is only 1% of the population, out of 10,000 
patients only 100 will truly have the disease. However, 590 of the 9,900 patients without the disease will have 
a positive test (9,900 x false positive rate of 5%) and will be incorrectly predicted to have the disease. With 
regard to this test, therefore, despite a high sensitivity and high specificity, the overall accuracy of the test in 
correctly identifying the disease is very low (only 1%). 
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 Disease No Disease  
Test Positive 95 495 590 
Test Negative 5 9405 9410 

 100 9900 10000 
 

 Sensitivity = 95/(95+5) = 0.95 
 Specificity = 9405/(9405+495) = 0.95 
 Positive Predictive Value = 95/(95+495) = 0.16 
 Negative Predictive Value = 9405/(9405+5) = 0.99 
 Accuracy =(95+5)/(95+5+495+9405) = 0.01 
 This is an extreme case, but it illustrates one of the potential problems with using sensitivity and 
specificity to assess test utility. Sensitivity, specificity, and accuracy are the “gold standard” methods for 
evaluating diagnostic tests in the medical literature. The effect of decision thresholds and disease prevalence, 
however, should always be kept in mind when interpreting data analyzed with these tests. 
 
RECEIVER OPERATING CHARACTERISTIC (ROC) CURVES 
 

 A statistical method which avoids the problems associated with the use of sensitivity and specificity is 
receiver operating characteristic (ROC) curve analysis. It is being used more and more frequently in the 
medical literature. As we have seen, in order to improve a test's sensitivity we must frequently accept a 
decrease in specificity due to the way in which we define disease. One way to demonstrate this relationship is 
to construct the ROC curve for the test. This curve plots sensitivity (the true positive fraction) against 1 - 
specificity (the false positive fraction). 
 
 To create an ROC curve, we must first determine all possible decision thresholds for the test and 
calculate the sensitivity and specificity of the test at each point. After plotting the sensitivity and 1 - specificity 
for each decision threshold, we can then choose the sensitivity that maximizes the specificity and identify the 
decision threshold for that point. Once the curve is plotted, we can also calculate the area under the ROC 
curve and use that as a measure of the test’s usefulness. Since the “perfect” diagnostic test has a sensitivity 
of 1.0 and a specificity of 1.0, the “perfect” ROC curve has an area under the curve of 1.0. In comparing two 
diagnostic tests, the test with the largest area under the ROC curve will have the fewest false positives and 
false negatives. By comparing the area under each test’s ROC curve and determining whether they are 
statistically different, one diagnostic test can be compared with another irrespective of the decision thresholds 
utilized for each test. 
 
 As an example, consider a study in which 98 patients underwent weaning from mechanical ventilation 
using negative inspiratory force (NIF) measurements as the determing factor for extubation. In this study, 81 
patients remained extubated, while 17 required reintubation. We will define our “disease” as successful 
extubation from mechanical ventilation. To begin an ROC analysis, we must first choose a number of decision 
thresholds which are clinically of value. NIF is usually measured from 0 to 65 cm H2O with an NIF of > 30 cm 
H2O traditionally being used to identify patients who are ready for extubation.  Using a range of decision 
thresholds (X) between 0 and 65 cm H2O, therefore, each patient can be classified as having had one of four 
possible outcomes: 
 

 1) The patient was successfully extubated and had an NIF of X at extubation 
 2) The patient was subsequently reintubated and had an NIF of less than X 
 3) The patient was subsequently reintubated and had an NIF of X 
 4) The patient was successfully extubated and had an NIF of greater than X 
 

 For each decision threshold, we evaluate each of the 98 patients to determine which of the four possible 
outcomes they fall into. A table of our data might appear like that in Figure 4-2. 
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        NEGATIVE INSPIRATORY FORCE (cm H20) 

Decision Threshold (X) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 
Extubated at X 0 1 0 1 3 13 19 11 11 3 5 3 11 0 
Reintubated at < X 0 0 0 0 1 2 4 9 9 14 14 16 16 17 
Reintubated at X 0 0 0 1 1 2 5 0 5 0 2 0 1 0 
Extubated at  > X 81 81 80 80 79 76 63 44 33 22 19 14 11 0 

 

Figure 4-2: ROC analysis: extubation outcome 
stratified by decision threshold 

 
 For an NIF decision threshold of 30 cm H2O (the traditional threshold or “cut-off” value for NIF), for 
example, 19 patients were successfully extubated with an NIF of 30 and 63 patients were successfully 
extubated with an NIF of > 30. Meanwhile, 5 patients were initially extubated with an NIF of 30, but required 
reintubation, and 4 patients were initially extubated with a NIF of < 30, but also required reintubation. 
 
  
 Having established the number of patients for each outcome at the various decision thresholds, we 
can then calculate the sensitivity (true positive fraction) and 1-specificity (false positive fraction) of the test at 
each decision threshold. Since our “disease” is successful extubation, we calculate sensitivity and specificity 
as follows: 
 

Sensitivity = TP/(TP + FN) 
   = Extubated at > X / All extubated 
   = Extubated at > X / 81 
 

Specificity = TN/(TN + FP) 
   = Reintubated at X / All reintubated 
   = Reintubated at X / 17 

 
 This results in the following table of sensitivity, specificity, and 1 - specificity for each of the decision 
thresholds from 0 to 65 cm H2O: 
 

NEGATIVE INSPIRATORY FORCE (cm H20) 
 

Decision Threshold (X) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 
Sensitivity 0 0 0 0 .06 .11 .24 .53 .53 .82 .82 .94 .94 1 
Specificity 0 0 .99 .99 .98 .94 .78 .54 .41 .27 .23 .17 .14 0 

1 - specificity 0 0 .01 .01 .02 .06 .22 .46 .59 .73 .77 .83 .86 1 
 

Figure 4-3: ROC analysis: Sensitivity, specificity 
and 1 - specificity at each decision threshold 

 

 Using these numbers, the sensitivity (true positive fraction) is then plotted against 1 - specificity (false 
positive fraction) to generate the ROC curve for the test. 
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Figure 4-4:  Receiver operating characteristic curve for 
NIF in predicting successful extubation 

 
 A useful diagnostic test is generally considered to be one with an area under the ROC curve above 0.50 
(noted by the dashed line on Figure 4-4). The ROC curve for NIF is above this line connecting 0,0 with 1,1 
and thus has an area above 0.50. The actual area under the NIF curve is 0.54 (see references 4-7 for details 
on calculating the area under ROC curves). We can also deduce from the curve that for this study the NIF 
which maximizes sensitivity and specificity is 35 cm H2O and not the traditional value of 30 cm H2O. The area 
under the NIF curve can be compared to that of other diagnostic tests to determine which test is a better 
predictor of successful extubation. Such calculations, although involved, are readily performed and the reader 
is referred to the articles by Hanley (1983) and Beck (1986) for further details and examples. 
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