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CHAPTER FIVE 
 

ANALYSIS OF DISCRETE VARIABLES 
 

 Discrete variables are those which can only assume certain fixed values. Examples include outcome 
variables with results such as live vs die, pass vs fail, and extubated vs reintubated. Analysis of data obtained 
from discrete variables requires the use of specific statistical tests which are different from those used to 
assess continuous variables (such as cardiac output, blood pressure, or PaO2) which can assume an infinite 
range of values. The analysis of continuous variables is discussed in the next chapter. 
 
 The two statistical tests which are most commonly used to analyze discrete variables are the chi-square 
test (including the chi-square test with Yates’ correction) and Fisher’s exact test. Both of these tests are 
based on the use of 2 x 2 contingency tables (Figure 5-1) which classify patients as either true positives, 
true negatives, false positives, or false negatives with regard to their disease status and test outcome. 
 

 Disease Present Disease Absent 
 

Test Positive 
 

True Positive 

 

 

False Positive 

 

Test Negative 
 

False Negative 

 

 

True Negative 

 

Figure 5-1: 2 x 2 Contingency Table 
 
 To use these two tests, we must first carefully define the disease being studied as well as the criteria 
which constitute a positive test, assigning each patient to one of the four possible outcomes. Having created 
a 2 x 2 contingency table of these results, the appropriate statistical test can be performed calculating the 
critical value of the test which identifies whether a statistically significant difference exists between the two 
groups of patients. The significance level associated with this critical value (more commonly referred to as the 
p-value) can then be obtained from a chi-square distribution table to quantitate the significance of the 
difference between the two groups. 
 
CHI-SQUARE 

 

 The chi-square test is a statistical method for determining the approximate probability of whether the 
results of an experiment may arise by chance or not. The test is performed by first creating a 2 x 2 
contingency table of the observed disease and test outcome frequencies. 
 

 Disease No Disease  
    

Test Positive a b (a + b) 
    
    

Test Negative c d (c + d) 
    

 (a + c) (b + d) n 
 

where: a = true positives, b = false positives, c = false 
negatives, d = true negatives, n = total patients 

 
 

 If the null hypothesis is true (the test does not discriminate between patients with the disease and 
patients without the disease), we would expect the disease frequencies to be equally distributed based on the 
probabilities of a positive and a negative test result. Since the frequency of an event is given by the probability 
of the event multiplied by the number of events, the expected frequency of diseased patients with a positive 
test result (i.e., true positives or the frequency in cell “a”) is: 
 
 

expected true positives = probability of disease x probability of a positive test x n 
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 Mathematically, this can be expressed as: 
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 The expected frequencies for cells b, c, and d (i.e., false positives, false negatives, and true negatives 
respectively) can be calculated similarly. The chi-square (Χ2) test compares the observed (O) frequencies 
(the actual patient data) with the expected (E) frequencies (those which are expected based on the probability 
of the disease) and determines how likely it is that their difference (O-E) occurred by chance. This results in 
the formula below 
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which calculates the critical value for chi-square. If the critical value obtained is small, the observed 
frequencies are not very different from the expected frequencies and the two groups are likely to be similar. If 
the critical value is large, the observed and expected frequencies are very different and the probability that 
the two groups are different from one another is real and is not likely due to chance alone. 
 
 In actual usage, the chi-square test is calculated using the following approximation: 
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 As previously stated, the critical value is that value of the test which must be obtained in order that the 
two groups can be considered significantly different. Chi-square has a known distribution from which the 
critical value for any significance level and contingency table can be obtained. Tables of critical values for 
commonly used significance levels can be found in most statistics books using one degree of freedom (df) 
or can be calculated for a particular critical value by a computer statistics package to obtain the exact level of 
significance. The critical value of chi-square for a significance level (or p-value) of 0.05, for example, is 3.84. 
The null hypothesis for the chi-square test is that there is no difference in test results between patients with 
and without the disease. Thus, if the critical value of chi-square is less than 3.84, we would accept the null 
hypothesis and state that the test does not discriminate between patients with and without the disease. If the 
value of chi-square obtained from the above equation is greater than 3.84, we would accept the alternate 
hypothesis and state that the test identifies patients with the disease at a statistically higher rate than those 
without the disease (with a 5% chance of having committed a Type I error). If we wished to use the smaller 
significance level of 0.01 instead of 0.05, for example, the critical value of chi-square would increase to 
6.64.The critical values of chi-square for the most commonly used significance levels (using one degree of 
freedom) are listed below: 
 

Critical values of chi-square  (df=1) 
Significance level 0.10 0.05 0.01 0.001 
Critical value 2.70 3.84 6.64 10.83 

 
 Degrees of freedom are determined by sample size and are defined as the number of observations (n) 
minus 1. They arise from the fact that if a particular statistic is known, only n - 1 of the observations are free to 
vary if the statistic is to remain the same. For example, if we make 5 observations and calculate their mean, 
we are free to change the value of only 4 of the 5 observations as once we have done so, we will 
automatically know the value of the 5th observation if the mean is to remain the same. Contingency tables 
represent a special situation in which the degrees of freedom are given by: df = (rows - 1)(columns - 1). For a 
2 x 2 table this results in df = (2-1)(2-1) = 1. 
 
 Consider a study in which we wish to evaluate a particular set of extubation criteria (the test) in predicting 
successful extubation from mechanical ventilation (the disease). Suppose we studied 123 patients and noted 
whether they passed or failed our extubation criteria and whether they remained extubated or required 
reintubation. We might find that 105 patients were successfully extubated while 18 patients required 
reintubation. Of these 123 patients, 72 patients passed our extubation criteria while 51 failed the criteria. We 
would set up the following 2 x 2 contingency table to analyze our data. Based on these test and disease 
outcomes, we would expect to see the frequencies listed below: 
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 Expected Frequencies Observed Frequencies 
 

 Extubated Reintubated    Extubated Reintubated  
Pass 

criteria 
105 x 72 = 61 

 123 
18 x 72 = 11 

123 
72  Pass 

criteria 
 

66 
 

6 
 

72 

Fail 
criteria 

105 x 51 = 44 
  123 

18 x 51 = 7 
  123 

51  Fail 
criteria 

 

39 
 

12 
 

51 

 105 18 123 105 18 123   
 
 We would then use the chi-square test to compare our expected and observed frequencies to determine 
whether their difference is greater than that which we would expect to see by chance alone. Note that chi-
square is a one-tailed test as we are only evaluating the difference in one direction (i.e., greater than by 
chance alone). We would define our study hypotheses in the following manner: 
 

Null hypothesis: the criteria do not predict successful extubation 
Alternate hypothesis: the criteria predict successful extubation 

 

 In practice, the expected frequencies are rarely calculated and the following equation is used to calculate 
the critical value of chi-square based on the observed frequencies: 
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5.52
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 Since 5.52 exceeds the critical value of 3.84 required for a significance level of 0.05, we would reject our 
null hypothesis and conclude that our criteria accurately predict successful extubation with a significance level 
of less than 0.05 (i.e., the probability that these results occurred by chance is less than 0.05 or 5%). Since 
5.52 is less than 6.64 (the critical value for a significance of 0.01) our actual significance level is somewhere 
between 0.05 and 0.01. We could use a computer statistics package to calculate the exact value. 
 
 The standard chi-square test should be used only if the total number of observations (n) is greater than 
40 and the expected frequency in each cell is at least 5. If n is between 20 and 40, and the expected 
frequency in each cell of the contingency table is at least 5, the chi-square test with Yates’ correction 
should be used. Yates’ correction takes into account the uncertainty introduced by small numbers of 
observations which might result in our concluding that a difference exists when it does not. It is a more 
conservative test which makes a Type I error less likely, but a Type II error more likely. If n is less than 20, or 
any of the expected frequencies are less than 5, the chi-square test, even with Yates’ correction, is not 
appropriate and Fisher’s exact test should be used. When the number of observations is small, therefore, 
the expected frequencies should be calculated to ensure that the appropriate statistical test is used. 
Calculation of the chi-square test with Yates’ correction for n between 20 and 40 is: 
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Suppose we wish to know whether patients who require reintubation are more likely to be older than 60 years 
of age. We might study 30 patients noting their age and whether they were successfully extubated or required 
reintubation. Our null hypothesis would be that increased age does not affect successful extubation while the 
alternate hypothesis would be that increased age does affect successful extubation. The expected and 
observed frequencies for our study might look like this: 
 Expected Frequencies Observed Frequencies 
 

 Extubated Reintubated    Extubated Reintubated  
Under 

60 
20 x 15 = 10 

30 
10 x 15 = 5 

   30 
15  Under 

60 
 

12 
 

3 
 

15 

Over 60 20 x 15 = 10 
30 

10 x 15 = 5 
   30 

15  Over  
60 

 

8 
 

7 
 

15 

 20 10 30 20 10 30   
 Since our total n is only 30 (i.e., less than 40) and the expected frequency in each cell is at least 5, the 
chi-square test with Yates’ correction is appropriate and is calculated as follows: 
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 As the critical value of chi-square does not exceed 3.84, we must accept the null hypothesis and 
conclude that age does not significantly affect successful extubation. In fact, the actual significance level 
associated with this critical value is 0.25. Note that there is a trend for patients over 60 years of age to require 
reintubation, but that the trend does not reach significance. It is possible that a true difference does exist, but 
that we have not studied enough patients yet to detect a significant difference and have committed a Type II 
error. The issue of adequate sample size will be addressed in Chapter Nine. 
 
FISHER'S EXACT TEST 

 

 Whereas the chi-square test measures the approximate probability of an event’s occurrence, Fisher’s 
exact test calculates the exact probability of the observed frequencies in a 2 x 2 contingency table. 
Computationally, it can become quite involved, but it is easily calculated on most computers. It is most 
commonly used when the study population is small (n < 20) or when the expected frequency in one of the 
outcome groups is less than 5. It can, however, be used for any 2 x 2 contingency table regardless of the 
number of observations. Unlike chi-square, which by definition is one-tailed, Fisher’s exact test can be 
calculated as both a one-tailed or a two-tailed test reflecting its ability to look at differences in both directions. 
 
 The probability (P) of observing the frequencies in a 2 x 2 contingency table using Fisher’s exact test is 
given by: 

( ) ( ) ( ) ( )
P
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n!a!b!c! d!
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 In order to calculate the exact probability of an event’s occurrence, however, we must also take into 
account the more extreme occurrences which, although more rare, would be even more likely to demonstrate 
a significant difference had they occurred. The exact probability is thus given by the sum of not only the 
probability of the observed frequencies, but also all of the more extreme occurrences. For example, if we use 
Fisher’s exact test to calculate the probability of observing the frequencies from the previous example of 
successful extubation and patient age we obtain: 
 

( ) ( ) ( ) ( )
P

15  ! 15  ! 20  ! 10  !
30!12!3!8!7!

0.097obs = =  

 

 Taking into account the more extreme occurrences of reintubation which would give even more evidence 
for an effect of age on successful extubation, we obtain the following probabilities which we sum to obtain the 
exact probability of the observed frequencies: 
 

 Extubated Reintubated 
 Under 60 Over 60 Under 60  Over 60 P        
 Study Data 12 3 8 7 0.097 
 Extreme Occurrence 13 2 7 8 0.022 
 Extreme Occurrence 14 1 6 9 0.0025 
 Extreme Occurrence 15 0 5 10 0.0001 
 sum =  0.122 
 

 Thus, the exact one-tailed probability of observing the study frequencies is 0.122 which is greater than 
the probability (significance level) of 0.05 which we would normally consider to indicate a significant 
difference. Fisher’s exact test therefore confirms our conclusion that age does not affect successful 
extubation. Note that the exact probability calculated by Fisher’s exact test is smaller than the approximate 
probability of 0.25 which was calculated using the chi-square test with Yates’ correction (which tends to be 
conservative and is more likely to result in a Type II error). 
 
 If our alternate hypothesis had been “increased age either increases or decreases the incidence of 
successful extubation,” we would have been asking a bidirectional question and would have needed a two-
tailed test to appropriately answer our hypothesis. The chi-square test, by definition, is a one-tailed test and 
would therefore not have been appropriate. Fisher’s exact test can be used as both a one- and two-tailed 
test. Some statisticians approximate the probability of a two-tailed Fisher’s exact test by doubling the one-
tailed probability. In the situation in which either the sum of the two rows or the sum of the two columns is the 
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same, this is appropriate. When this is not the case, however, the calculation of the two-tailed Fisher’s exact 
test becomes more involved and the reader is referred to Glantz (reference 8) for further details. 
 
 
 

SUGGESTED READING 
 

1. Fletcher RH, Fletcher SW, Wagner EH. Clinical epidemiology: the essentials. Baltimore: Williams and 
Wilkins, 1982:41-58. 

2. Wassertheil-Smoller S. Biostatistics and epidemiology: a primer for health professionals. New York: 
Springer-Verlag, 1990:18-21. 

3. Campbell MJ, Machin D. Medical statistics: a commonsense approach. New York: John Wiley and sons, 
1990:134-137. 

4. Dawson-Saunders B, Trapp RG. Basic and clinical biostatistics. Norwalk: Appleton and Lange, 1994:147-
155. 

5. Beck JR, Shultz EK. The use of relative operating characteristic (ROC) curves in test performance 
evaluation. Arch Pathol Lab Med 1986;110:13-20. 

6. Yates F. Tests of significance for 2 x 2 contingency tables. J R Statist. Soc A 1984;147:426-463. 
7. O’Brien PC, Shampo MA. Statistics for clinicians: 8.comparing two proportions: the relative deviate test 

and chi-square equivalent. Mayo Clin Proc 1981;56:513-515. 
8. Glantz SA. Primer of biostatistics (3rd Ed). New York: McGraw-Hill, 1991:144-148. 
 


