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CHAPTER ONE 
 

BASIC STATISTICAL THEORY 
 
"Statistical methods are objective methods by which group trends are 
abstracted from observations on many separate individuals."1 

 
 Medicine is founded on the principles of statistical theory. As physicians, we employ scientific reasoning 
each day to diagnose the conditions affecting our patients and treat them appropriately. We apply our 
knowledge of and previous experience with various disease processes to create a differential diagnosis which 
we then use to determine which disease our patient is most likely to have. In essence, we propose a 
hypothesis (our diagnosis) and attempt to prove or disprove it through laboratory tests and diagnostic 
procedures. If the tests disprove our hypothesis, we must abandon our proposed diagnosis and pursue 
another. 
 
DEDUCTIVE AND INDUCTIVE REASONING 
 

 In proposing a diagnosis, we can either propose a general theory (such as “all patients with chest pain 
are having an acute myocardial infarction”) and make a specific diagnosis based upon our theory, or we can 
make specific observations (such as a CK-MB band of 10%, S-T segment changes on EKG, tachycardia, 
etc.) and arrive at a general diagnosis. 

 

 DEDUCTIVE REASONING 
General Theory                                              Specific Diagnosis 

 

Specific Observations                                         General Diagnosis 
 INDUCTIVE REASONING 
 

Figure 1-1: Deductive and Inductive Reasoning 
  

 There are thus two forms of scientific reasoning. Deductive reasoning involves proposing a general 
theory and using it to predict a specific conclusion. Inductive reasoning involves identifying specific 
observations which are used to propose a general theory. Physicians use deductive reasoning every day. If 
we are presented with a patient who has right lower quadrant abdominal pain and the last four patients we 
have seen with this finding have had acute appendicitis, we will likely use deductive reasoning to predict that 
this patient will also have acute appendicitis. We use a general theory (i.e., “all patients with right lower 
quadrant abdominal pain have acute appendicitis”) to arrive at a specific conclusion or diagnosis. We could 
just as easily have used inductive reasoning to arrive at the same diagnosis. Upon completing our history 
and physical examination, we might have referred to the medical literature on acute appendicitis and found 
that 55% of patients have the classic right lower quadrant abdominal pain, 90% have nausea, and up to 33% 
may have a normal white blood cell count. Based upon our history, physical examination, laboratory findings, 
and this data from the medical literature (all specific observations), we could then have used inductive 
reasoning to make a general diagnosis of acute appendicitis. 
 
 Deductive and inductive reasoning are used throughout medical research to answer questions about 
specific groups of patients. A hypothesis or theory regarding the question of interest is proposed and and a 
study is performed in which attempts are made to disprove the study hypothesis using various tests and 
diagnostic procedures. From the observations collected on these study patients, the original hypothesis is 
either accepted or modified and the study conclusions are applied to the treatment of patients in the general 
population. 
 
HYPOTHESIS TESTING 
 

 The hypothesis is the foundation of any research study or clinical trial. To answer any question, we must 
first propose two hypotheses. The first, the null hypothesis, is the cornerstone of statistical inference. The 
null hypothesis states that ”there is no difference between the groups or treatments being evaluated”. The null 
hypothesis is tested against the second of our two hypotheses, the alternate hypothesis, which states that 
“there is a difference”. 
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Null Hypothesis - there is no difference 
Alternate Hypothesis - there is a difference 

 
 If we reject the null hypothesis of no difference, we must accept the alternate hypothesis and conclude 
that there is a difference. It is important to remember that we can never prove that the null hypothesis is true; 
there is always a possibility that a difference exists, but that we have not found it yet. We have only but to 
show that a difference exists, however, to prove the null hypothesis is false. Therefore, we propose a null 
hypothesis and attempt to disprove it using statistical analysis. We use statistics because we can never be 
absolutely certain that a difference does or does not exist. We can therefore never be absolutely certain that 
we are correct in either accepting or rejecting any hypothesis. Statistical tests are used to either reject the null 
hypothesis or fail to reject it based on the statistical probabilities associated with the outcome of interest. 
 
TYPE I ERRORS, TYPE II ERRORS, AND SIGNIFICANCE LEVELS 
 

 There are two types of errors associated with using the null hypothesis. A Type I error occurs if the null 
hypothesis is rejected incorrectly (i.e., we conclude there is a difference when in fact there is not). The 
probability of making a Type I error is known as the significance level of the test. It is also commonly 
referred to as “alpha.” The significance level is a measure of how willing we are to make a Type I error. More 
formally stated, it is the probability of obtaining a result at least as unlikely as that which we have observed if 
the null hypothesis is really true. The familiar “p-value,” upon which such emphasis is placed in the medical 
literature, originates from the significance level. A p-value of 0.02 means that there is a 2% chance that we 
are wrong when we conclude that a difference exists. Traditionally, most researchers use a significance level 
of 0.05 to define statistical significance; that is, they are willing to accept a 5% chance of falsely concluding 
that a difference exists when it does not (a Type I error). Another way to look at this is that there is a 95% 
probability of correctly accepting (or rejecting) the null hypothesis. If we are very concerned about committing 
a Type I error, we might decrease our chosen significance level to 0.01 such that we are now willing to accept 
only a 1% chance of incorrectly rejecting the null hypothesis. The second potential error in using the null 
hypothesis is a Type II error, the probability of which is known as “beta.” A Type II error occurs when we fail 
to reject the null hypothesis when a difference does exist. We thus miss a potentially important effect by 
falsely concluding that there is no difference. 
 
 The impact of Type I and Type II errors is dependent upon the nature of the hypothesis being tested. If 
we are evaluating a drug to prevent sepsis and commit a Type I error (i.e., we conclude that the drug is better 
than placebo when it is not), we may promote a drug that in reality has no effect. Conversely, if we are testing 
a vaccine to prevent AIDS and commit a Type II error (i.e., we falsely conclude that the vaccine does not 
improve survival), a lifesaving vaccine may be ignored. As we have seen, one way to decrease the probability 
of a Type I error is to lower the significance level or alpha. By doing so, however, we make it harder to accept 
the alternate hypothesis and more likely that we will commit a Type II error and miss a significant difference. 
Thus, as the risk of committing a Type I error is decreased (such as by lowering the significance level of the 
test to 0.01), the risk of making a Type II error must necessarily increase. In order to lower the probability of 
making either a Type I or Type II error, we must increase the number of observations. As the number of 
observations increases, we will be more likely to detect a difference if one exists thus decreasing the chance 
of making an error. 
 
POWER 
 

 The ability to detect a difference is known as the power of a test and is defined as 1- beta (where “beta” 
represents the probability of making a Type II error). The higher the power of a test, the more likely a 
difference will be detected (if one exists). If finding a large difference between two prospective treatments  
(known as the effect size) is likely, only a small number of observations will be required to prove that the 
difference is real. As the effect size one wishes to detect becomes smaller, however, the number of 
observations necessary to detect a significant difference becomes larger. A clinical trial can therefore prove 
that no difference exists only if it has sufficient power to detect a significant difference to begin with. A study 
may likewise fail to detect a clinically significant difference due to a lack of sufficient power. A “non-significant” 
result only means that the existing data was not strong enough to reject the null hypothesis of no difference; a 
larger sample size might have provided the power necessary to reject the null hypothesis. Power is thus 
proportional to the number of observations. The sample size necessary to either accept or reject the null 
hypothesis is calculated from the significance level (the probability of making a Type I error), the power (the 
probability of finding a difference when there really is one), and the effect size (the clinically significant 
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difference we wish to detect) and should be calculated before a clinical trial is begun to ensure that the study 
has the ability to detect any differences which may be present. Calculation of the sample size necessary for a 
clinical study is known as “power analysis” and will be discussed in Chapter Nine. 
 
ONE-TAILED VERSUS TWO-TAILED TESTS 
 

 Careful definition of study hypotheses is the foundation of any research study. If the study hypotheses are 
not clearly stated at the beginning, conclusions based on the study observations will be difficult to make. In 
any study comparing two patient groups, tests, or outcomes (designated here as A and B), there are only 
three possible hypotheses: 
 

 1) There is no difference between A and B. 
   

    
2) There is a difference between A and B. 

 3) A is superior to B (or vice versa). 
 

 The first hypothesis is the null hypothesis of “no difference” which we attempt to disprove in any study. 
The second and third hypotheses are both forms of the alternate hypothesis. The second hypothesis states 
that there is a difference between A and B, but does not indicate the direction of the difference. This is the 
alternate hypothesis which we use if we have no a priori impression as to whether A or B is superior to the 
other. This is known as a “two-tailed” alternate hypothesis as we must test to see whether A > B and B > A. 
The third hypothesis clearly states A is superior to B. In order to prove that this is true we need only look in 
one direction (A > B). This is an example of a “one-tailed” alternate hypothesis and is the one we would 
choose if we are only interested in proving that A is superior to B. Because of this directionality, it is easier to 
prove a one-tailed hypothesis than a two-tailed hypothesis (which must look in both directions) and the 
statistical method which we use to test our hypothesis must take this into account. 
 
VARIABILITY: THE REASON FOR STATISTICAL ANALYSIS 
 

 We can never be absolutely certain that we are 100 percent correct in either accepting or rejecting any 
hypothesis. Such is the case with our clinical diagnoses as well. Not all patients with acute appendicitis 
present with the same signs and symptoms. There is always a certain variability present which imparts a 
degree of uncertainty to each of our diagnoses. The best that we can do is to make the most likely diagnosis 
given the data and the potential for error present. Variation can be inherent (due to normal biologic 
differences between patients) or introduced (such as an erroneous lab value, misinterpreted test, or missed 
physical exam finding). It is the presence of this inherent uncertainty that requires us to use statistical 
analysis throughout the practice of medicine. Because of variability, it is impossible to know the absolute 
chance of an event occurring or diagnosis being correct (such as acute appendicitis). There is always a small 
possibility that our diagnosis may be wrong. The concept of variability is central to basic statistical theory and 
is used in the calculation of virtually all statistical tests. It is not just the presence of variability that is 
important, but the amount. If we could measure the absolute variability present in our clinical observations, 
our diagnoses could be fairly accurate because we would always know how likely it was that we were wrong. 
It is impossible, however, to measure every source of variability and we use statistics to predict how much 
variability is likely to be present and how likely our diagnosis is wrong due to variability. 
 
PROBABILITY 
 

 We are therefore interested in the probability that our diagnosis is correct. Probabilities can range from 
zero (our diagnosis will never be correct) to one (our diagnosis will always be correct) and are calculated by 
dividing the number of times that an observation occurs by the number of potential observations. Suppose, 
for example, that upon exploratory laparotomy our patient is found to not have acute appendicitis. Our 
probability of accurately diagnosing acute appendicitis is now 4 cases of appendicitis out of 5 patients with 
abdominal pain or 0.80. We are thus 80% accurate in diagnosing acute appendicitis. Correspondingly, we 
have a probability of misdiagnosing acute appendicitis of 0.20 (1 missed diagnosis out of 5 patients with 
abdominal pain). Knowing this, we can calculate our expected frequency for errors in diagnosing acute 
appendicitis. If we see 100 patients each year with presumed acute appendicitis, we will likely misdiagnose 
100 x 0.20 or 20 patients. The odds of an event are given by the probability that the event occurs divided by 
the probability that it does not occur. The odds of our correctly diagnosing acute appendicitis is therefore 
0.80/0.20 or 4. We are 4 times more likely to make the correct diagnosis of acute appendicitis than the 
incorrect diagnosis. The likelihood of an event is the probability of the event occurring in different situations. 
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Thus, the likelihood of acute appendicitis might be different for men versus women or young people versus 
old. 
 
 The impact of one probability on another depends upon how they are related. If two events are mutually 
exclusive (i.e., the occurrence of one event excludes the occurrence of the other), the probability of either one 
event or the other occurring is given by the sum of their respective probabilities. If two events are 
independent (i.e., one event has no impact on the occurrence of the other event), the probability of both 
events occurring together is given by the product of their respective probabilities. For example, suppose 100 
patients (60% male, 40% female) are extubated from mechanical ventilation and the incidence of reintubation 
is 20% (80% are successfully extubated). The probability of either remaining extubated or requiring 
reintubation (two mutually exclusive events) is 0.80 + 0.20 or 1.0. Similarly, the probability of being male or 
female (also two mutually exclusive events) is 0.60 + 0.40 or 1.0. The likelihood of being male and requiring 
reintubation (two independent events) is 0.60 x 0.20 or 0.12 while the likelihood of being female and requiring 
reintubation is 0.40 x 0.20 or 0.08. The odds of requiring reintubation and being male versus female is thus 
0.12/0.08 or 1.5:1. 
 
SAMPLES AND POPULATIONS 
 

 The degree of variability present frequently depends on the population of interest. For example, an 
elevated white blood cell count in the presence of acute appendicitis is much more likely in a younger patient 
than in an elderly one. The probability of making a correct diagnosis of acute appendicitis based on an 
elevated white blood cell count is therefore higher in the younger patient as there is less variability in the 
presence of this sign. Thus, the population of interest can determine the amount of variability present.  
 
 A population is defined as all patients who have a particular characteristic of interest (i.e., all patients with 
acute appendicitis, all trauma patients, all Americans with high blood pressure). We can never evaluate the 
signs and symptoms of every patient in the world who develops acute appendicitis (or every trauma patient, 
every American with hypertension, etc.). We can, however, study a sample of the larger population of interest 
and make conclusions from data collected on the sample population which we then infer on the larger 
population (i.e., inductive reasoning). As always, the presence of variability in our sample introduces the 
possibility that our conclusions will be incorrect. If our inferences are to be accurate, therefore, the sample 
must be very similar to the larger population with regard to the characteristic of interest. The more similar the 
sample and the population, the more likely the conclusions we make from the sample will be accurate. One 
way in which to ensure that the sample is representative is to randomly choose sample patients from the 
population of interest. Theoretically, randomly chosen patients will have an equal probability of truly being 
representative of the population-at-large and will be more likely to provide accurate conclusions. Another 
method to obtain a representative sample is to increase the sample size. As the sample size approaches that 
of the population, the probability of error due to variability between the sample and the population-at-large will 
decrease.  
 
 It is usually impossible to test an entire population. This is another reason why we study a sample of the 
population of interest and make conclusions about the population based on the sample findings. There are 
significant advantages to studying samples. Samples can be studied more quickly, more accurately, and less 
expensively than entire populations. Statistical methods can then be used to estimate the probability that the 
sample findings truly represent those of the general patient population. 
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